
RAVE:
Pablo Vizcaino, Filippo Mantovani, Jesus Labarta, Roger Ferrer
HiPEAC - Workshop: RISC-V: the cornerstone ISA for the next generation of HPC infrastructures
Barcelona, January 21st 2025

1

RISC-V Analyzer of Vector Executions
a QEMU tracing plugin

Outline

◼ Background on RVV

◼ EPAC chip

◼ Emulation environment

◼ Why do we need RAVE?

◼ How does RAVE work?

◼ Use cases

2

Motivation

3

- RVV (RISC-V Vector extension) is RV’s bet for High Performance Computing

Motivation

4

128b

NEON

16384b

NEC-VE

128b

SSE

256b

AVX2

512b

AVX512

- RVV (RISC-V Vector extension) is RV’s bet for High Performance Computing

Motivation

5

ISA-defined max VL

128b

NEON

16384b

NEC-VE

128b

SSE

256b

AVX2

512b

AVX512

- RVV (RISC-V Vector extension) is RV’s bet for High Performance Computing

Motivation

6

Implementation-defined max VLISA-defined max VL

128b

NEON

16384b

NEC-VE

[128b → *]

RVV

128b

SSE

256b

AVX2

512b

AVX512

[128b→2048b]

SVE

- RVV (RISC-V Vector extension) is RV’s bet for High Performance Computing

Motivation
- RVV (RISC-V Vector extension) is RV’s bet for High Performance Computing

7

Implementation-defined max VLISA-defined max VL

 Runtime
 Variable VL

128b

NEON

16384b

NEC-VE

[128b → *]

RVV

128b

SSE

256b

AVX2

512b

AVX512

[128b→2048b]

SVE

Motivation
- RVV (RISC-V Vector extension) is RV’s bet for High Performance Computing

8

Implementation-defined max VLISA-defined max VL

 Runtime
 Variable VL

128b

NEON

16384b

NEC-VE

[128b → *]

RVV

Scalar processor

128b

SSE

256b

AVX2

512b

AVX512

[128b→2048b]

SVE

Motivation
- RVV (RISC-V Vector extension) is RV’s bet for High Performance Computing

9

Implementation-defined max VLISA-defined max VL

 Runtime
 Variable VL

128b

NEON

16384b

NEC-VE

[128b → *]

RVV

Scalar processor SIMD (e.g., AVX2)

128b

SSE

256b

AVX2

512b

AVX512

[128b→2048b]

SVE

Motivation
- RVV (RISC-V Vector extension) is RV’s bet for High Performance Computing

10

Implementation-defined max VLISA-defined max VL

 Runtime
 Variable VL

128b

NEON

16384b

NEC-VE

[128b → *]

RVV

Scalar processor SIMD (e.g., AVX2) Variable VL (e.g., RVV)

128b

SSE

256b

AVX2

512b

AVX512

[128b→2048b]

SVE

Who is implementing this technology?

11

European Processor Initiative (EPI)
 - Rhea: arm-based general purpose CPU
 - EPAC: European Processor Accelerator
 - Based on RISC-V
 - Many tiles: VRP, STX, VEC

AVX512 

SVE
512 bits per vector (8 DP elems)

Up to 2048 bits per vector (16 DP elems)

16384 bits per vector
(256 DP elems)

Very large vector length:

How can you develop code for this accelerator?

- BSC has the Software Development Vehicles (SDV)[1]:

12

LLVM-based compiler
(Vectorization)

FPGA
(EPAC HW Emulation)

Profile tools
(Analysis)

EPAC Testchip
(EPAC Silicon)

[1] Filippo Mantovani et al. (2023, May). Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study. In
International Conference on High Performance Computing (pp. 526-537). Cham: Springer Nature Switzerland.

How can you develop code for this accelerator?

- BSC has the Software Development Vehicles (SDV)[1]:

13

LLVM-based compiler
(Vectorization)

FPGA
(EPAC HW Emulation)

Profile tools
(Analysis)

EPAC Testchip
(EPAC Silicon)

[1] Filippo Mantovani et al. (2023, May). Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study. In
International Conference on High Performance Computing (pp. 526-537). Cham: Springer Nature Switzerland.

Access restricted
to EPI partners

Open access! Open access!

How can you develop code for this accelerator?

- BSC has the Software Development Vehicles (SDV)[1]:

14

LLVM-based compiler
(Vectorization)

FPGA
(EPAC HW Emulation)

Profile tools
(Analysis)

EPAC Testchip
(EPAC Silicon)

[1] Filippo Mantovani et al. (2023, May). Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study. In
International Conference on High Performance Computing (pp. 526-537). Cham: Springer Nature Switzerland.

Access restricted
to EPI partners

Open access! Open access!
RAVE

Commodity HW with QEMU + RAVE
(SW Emulation)

Open access!

What is ? a software emulator

15

System-level emulation

What is ? a software emulator

16

System-level emulation User-level emulation

What is RAVE? an analysis/profiling plugin

17

System-level emulation User-level emulation

What is RAVE useful for?
- RAVE monitors and counts metrics such as:

- Number of emulated scalar and vector instructions (you can compute Vec.Mix)

- Divided by type (Memory, Arithmetic, Mask, stride type, SEW, …)

- Average Vector Length (VL)

- Number of bytes load/stored with scalar/vector instructions

- Program Counter (PC)

18

- RAVE provides:
- API called for user application to instrument regions of interest

- Generation of reports/logs at the end of the emulation

- Generation of Paraver traces (BSC’s format for traces)

What is RAVE useful for?
- RAVE monitors and counts metrics such as:

- Number of emulated scalar and vector instructions (you can compute Vec.Mix)

- Divided by type (Memory, Arithmetic, Mask, stride type, SEW, …)

- Average Vector Length (VL)

- Number of bytes load/stored with scalar/vector instructions

- Program Counter (PC)

19

- RAVE provides:
- API called for user application to instrument regions of interest

- Generation of reports/logs at the end of the emulation

- Generation of Paraver traces (BSC’s format for traces)

⚠ Remember: Variable VL!

Controlling the trace with the RAVE API

- We add instrumentation mechanisms, to define regions of interest.
- We work with tuples of Events and Values:

20

int main(){
 rave_name_event(1000,"Code Region")
 rave_name_value(1000, 1, "Ini")
 rave_name_value(1000, 2, "Compute")

 double array1[256], array2[256], array3[256];

 rave_event_and_value(1000, 1)
 ini_vectors(array1, array2, array3);
 rave_event_and_value(1000, 0)

 rave_event_and_value(1000, 2)
 for(int i=0; i<256; ++i)
 array3[i] += array1[i] + array2[i];
 rave_event_and_value(1000,0)
};

Enclose first region with value 1 (“Ini”)

Define event 1000 = “Code Region”
Value 1 = “Ini”
Value 2 = “Compute”

Enclose second region with value 2 (“Compute”)

Controlling the trace with the RAVE API

- We add instrumentation mechanisms, to define regions of interest.
- We work with tuples of Events and Values:

21

int main(){
 rave_name_event(1000,"Code Region")
 rave_name_value(1000, 1, "Ini")
 rave_name_value(1000, 2, "Compute")

 double array1[256], array2[256], array3[256];

 rave_event_and_value(1000, 1)
 ini_vectors(array1, array2, array3);
 rave_event_and_value(1000, 0)

 rave_event_and_value(1000, 2)
 for(int i=0; i<256; ++i)
 array3[i] += array1[i] + array2[i];
 rave_event_and_value(1000,0)
};

Enclose first region with value 1 (“Ini”)

Define event 1000 = “Code Region”
Value 1 = “Ini”
Value 2 = “Compute”

Enclose second region with value 2 (“Compute”)

Before continuing….

- If you want to know more about the RAVE internals :

22

📖 RAVE: RISC-V Analyzer of Vector Executions, a QEMU
tracing plugin https://arxiv.org/abs/2409.13639

https://arxiv.org/abs/2409.13639

RAVE Use case: Emulation Trace (I)

23

- We emulated a Breadth First Search (BFS) code vectorized with RVV

RAVE Use case: Emulation Trace (I)

24

- We emulated a Breadth First Search (BFS) code vectorized with RVV

RAVE Use case: Emulation Trace (I)

25

- We emulated a Breadth First Search (BFS) code vectorized with RVV

RAVE Use case: Emulation Trace (II)

Use trace insight to improve vectorization:

26

RAVE Use case: Emulation Trace (III)

- We emulated a Plasma-Physics application called Vlasiator [1]
- The code was not initially designed with long vectors in mind:

27
[1] https://www.helsinki.fi/en/researchgroups/vlasiator

https://www.helsinki.fi/en/researchgroups/vlasiator

RAVE Use case: Emulation Trace (III)

- We emulated a Plasma-Physics application called Vlasiator [1]
- The code was not initially designed with long vectors in mind:

28
[1] https://www.helsinki.fi/en/researchgroups/vlasiator

https://www.helsinki.fi/en/researchgroups/vlasiator

RAVE Use case: Emulation Trace (III)

- We emulated a Plasma-Physics application called Vlasiator [1]
- The code was not initially designed with long vectors in mind:

29
[1] https://www.helsinki.fi/en/researchgroups/vlasiator

Scalar gaps not seen on the C++ code

Added by the compiler: Copies!!

https://www.helsinki.fi/en/researchgroups/vlasiator

RAVE Use case: Emulation Trace (III)

- We emulated a Plasma-Physics application called Vlasiator [1]
- The code was not initially designed with long vectors in mind:

30
[1] https://www.helsinki.fi/en/researchgroups/vlasiator

Scalar gaps not seen on the C++ code

Added by the compiler: Copies!!
Removed by passing

operands per reference

https://www.helsinki.fi/en/researchgroups/vlasiator

RAVE Use case: Console report

You can also obtain vectorization metrics on a console report:

31

your-machine$ rave ./bfs -f graph.el
(...)
Reg. #3: Event 1000(code_region), Value 3(BU)

tot_instr: 38872
 scalar_instr: 15818 (40.69 %)
 vsetvl_instr: 5236 (13.47 %)
 SEW 64 vector_instr: 17818 (45.84 %)
 avg_VL: 255.60 elements
 Arith: 2466 (13.84 %)
 FP: 0 (0.00 %)
 INT: 2466 (100.00 %)
 Mem: 3142 (17.63 %)
 unit: 1573 (50.06 %)
 strided: 0 (0.00 %)
 indexed: 1569 (49.94 %)
 Mask: 8171 (45.86 %)
 Other: 4039 (22.67 %)

RAVE Use case: Console report

You can also obtain vectorization metrics on a console report:

32

your-machine$ rave ./bfs -f graph.el
(...)
Reg. #3: Event 1000(code_region), Value 3(BU)

tot_instr: 38872
 scalar_instr: 15818 (40.69 %)
 vsetvl_instr: 5236 (13.47 %)
 SEW 64 vector_instr: 17818 (45.84 %)
 avg_VL: 255.60 elements
 Arith: 2466 (13.84 %)
 FP: 0 (0.00 %)
 INT: 2466 (100.00 %)
 Mem: 3142 (17.63 %)
 unit: 1573 (50.06 %)
 strided: 0 (0.00 %)
 indexed: 1569 (49.94 %)
 Mask: 8171 (45.86 %)
 Other: 4039 (22.67 %)

RAVE Use case: Console report

You can also obtain vectorization metrics on a console report:

33

your-machine$ rave ./bfs -f graph.el
(...)
Reg. #3: Event 1000(code_region), Value 3(BU)

tot_instr: 38872
 scalar_instr: 15818 (40.69 %)
 vsetvl_instr: 5236 (13.47 %)
 SEW 64 vector_instr: 17818 (45.84 %)
 avg_VL: 255.60 elements
 Arith: 2466 (13.84 %)
 FP: 0 (0.00 %)
 INT: 2466 (100.00 %)
 Mem: 3142 (17.63 %)
 unit: 1573 (50.06 %)
 strided: 0 (0.00 %)
 indexed: 1569 (49.94 %)
 Mask: 8171 (45.86 %)
 Other: 4039 (22.67 %)

your-machine$ rave ./bfs_no_if -f graph.el
(...)
Reg. #3: Event 1000(code_region), Value 3(BU)

tot_instr: 44780
 scalar_instr: 21866 (48.83 %)
 vsetvl_instr: 9556 (21.34 %)
 SEW 64 vector_instr: 13358 (29.83 %)
 avg_VL: 254.77 elements
 Arith: 2481 (18.57 %)
 FP: 0 (0.00 %)
 INT: 2481 (100.00 %)
 Mem: 3028 (22.67 %)
 unit: 1454 (48.02 %)
 strided: 0 (0.00 %)
 indexed: 1574 (51.98 %)
 Mask: 4992 (37.37 %)
 Other: 2857 (21.39 %)

Reduction in Mask and
Other Vec Instructions

Conclusions

- We developed a plugin for QEMU targeting the RISC-V Vector Extension

- RAVE allows to study vectorized applications with fine-grain detail:
- Instruction Mix, Vector Length, …

- RAVE is already being used by performance analysts at BSC to study HPC
applications

- Future work includes:
- Multi-core emulation (OMP and MPI)
- Automatic instrumentation of user functions
- Adding a timing model

34

Try it yourself!

https://repo.hca.bsc.es/gitlab/pvizcaino/rave

35

https://repo.hca.bsc.es/gitlab/pvizcaino/qemu-sdv

This research has received funding from the European High Performance Computing Joint Undertaking (JU) under
Framework Partnership Agreement No 800928 (European Processor Initiative) and Specific Grant Agreement No
101036168 (EPI SGA2). The JU receives support from the European Union’s Horizon 2020 research and innovation
programme and from Croatia, France, Germany, Greece, Italy, Netherlands, Portugal, Spain, Sweden, and Switzerland.
The EPI-SGA2 project, PCI2022-132935 is also co-funded by MCIN/AEI /10.13039/501100011033 and by the UE
NextGenerationEU/PRTR.

36

Acknowledgment

Don’t hesitate to contact me at pablo.vizcaino@bsc.es !

mailto:pablo.vizcaino@bscs.es

