
Co-design, from a
buzzword to a reality,
an EPI success story

Marta Garcia-Gasulla

Barcelona Supercomputing Center

20 January 2025 HIPEAC25 – Barcelona

Disclaimer

➢Almost all the slides of this presentation come from…
• Jesus Labarta (BSC)

• Filippo Mantovani (BSC)

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story – Marta Garcia-Gasulla 2

Who is who?
What is what?

3

EPI Main Objective

➢To develop European microprocessor and accelerator technology

➢Strengthen competitiveness of EU industry and science

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 4

SiPearl, Atos, CEA, UniBo,

E4, UniPi, P&R
BSC, SemiDynamics, EXTOLL, FORTH,

ETHZ, UniBo, UniZG, Chalmers, CEA, E4

Rhea

general purpose

CPU

EPAC

3 Accelerators

EPI Main Objective

➢To develop European microprocessor and accelerator technology

➢Strengthen competitiveness of EU industry and science

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 5

SiPearl, Atos, CEA, UniBo,

E4, UniPi, P&R
BSC, SemiDynamics, EXTOLL, FORTH,

ETHZ, UniBo, UniZG, Chalmers, CEA, E4

Rhea

general purpose

CPU

EPAC

3 Accelerators

EPAC: EPI Accelerator v1.5

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story – Marta Garcia-Gasulla 6

L2-HN tile

Distributed L2 cache (256 kB/slice) and
Coherence Home Node

VRP tile
General purpose RISC-V CPU

supporting variable precision

arithmetic up to 256 bit elements

STX tile

RISC-V many-core machine learning
accelerator targeting stencil and
tensor arithmetics.

CHI NoC and SerDes

On-chip high-speed network based
on multiple CHI cross points (XP).

Off-chip link based on SerDes.

Physical design by
Prototype board integration by

VEC tile
General purpose RISC-V CPU
Avispado Core (16 kI$, 32 kD$)
with dedicated VPU
Up to 256 DP element vector length

EPAC: EPI Accelerator v1.5

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story – Marta Garcia-Gasulla 7

L2-HN tile

Distributed L2 cache (256 kB/slice) and
Coherence Home Node

VRP tile
General purpose RISC-V CPU

supporting variable precision

arithmetic up to 256 bit elements

STX tile

RISC-V many-core machine learning
accelerator targeting stencil and
tensor arithmetics.

CHI NoC and SerDes

On-chip high-speed network based
on multiple CHI cross points (XP).

Off-chip link based on SerDes.

Physical design by
Prototype board integration by

VEC tile
General purpose RISC-V CPU
Avispado Core (16 kI$, 32 kD$)
with dedicated VPU
Up to 256 DP element vector length

What is special in EPAC-VEC?

➢Boots Linux

➢The scalar in-order RISC-V core can release several requests of cache lines to the
main memory

➢The core is connected to a Vector Processing Unit (VPU) with very wide vector
registers (16kb)

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story – Marta Garcia-Gasulla 8

AVX512

SVE

512 bits per vector (8 DP elements)

Up to 2048 bits per vector (32 DP elements)

16384 bits per vector

(256 DP elements)

How do I program EPAC - VEC?

➢Autovectorization
• Leave it to the compiler

➢#pragma omp simd (aka “Guided vectorization”)
• Relies on vectorization capabilities of the compiler

▪ Usually works but gets complicated if the code calls functions

• Also usable in Fortran

➢C/C++ builtins (aka “Intrinsics”)
• Low-level mapping to the instructions

• Allows embedding it into an existing C/C++ codebase

• Allows relatively quick experimentation

➢Assembler
• Always a valid option but not the most pleasant

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 9

What to do until the hardware is ready?

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 10

Architecture

definition

RTL

implementation

Chip backTapeoutRTL

verification

Physical

design

Hardware development

Software development

Start testing on hwExecution on

simulator

Wake up Neo…

Follow the Software Development Vehicles

What to do until the hardware is ready?

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 11

Architecture

definition

RTL

implementation

Chip backTapeoutRTL

verification

Physical

design

Hardware development

Software development

Start testing on hwExecution on

simulator
Test SW in SDV

- Prepare system software

- Provide feedback to architects

- Prepare production codes

Software Development Vehicles (SDV)

12

Software Development Vehicles (SDV)

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 13

Co-design with SDV

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 14

Software Development Vehicles (SDV)

➢3 Steps:

• 1st step: Run in a commercial RISC-V platform (scalar CPU)

• 2nd step: RISC-V software emulation supporting RVV (RAVE)

• 3rd step: Run on VEC mapped into FPGA

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 15

Beginner Advanced Master

Beginner Advanced Master

Beginner Advanced Master

Complexity Clearance

Optimization of a CFD code for vector
architectures

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 16

Vectorization of a real CFD code (Alya)

➢ Alya is a multiphysics code, developed in
Fortran and parallelized with MPI

➢ “VECTOR_SIZE” is a parameter defined in
the code at compile time to exploit vector
units
• Allocates data structures in a vector-friendly way
• Values under study → [16, 64, 128, 240, 256, 512]

➢ Current work focuses on incompressible flow
• Mini-app representative of the element assembly

➢We divided the mini-app in “phases”
• Phases are regions of codes with one or more loops
• We are interested in loops because is where there is potential for vectorization
• 8 phases identified: P1+P2+P3+P4+P5+P6+P7+P8 = mini-app

➢ Study and optimization focus on the autovectorization capabilities
• No intrinsics → portability is preserved

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 17

1st step: Run on commercial RISC-V platforms
(scalar CPU)

➢Phases taking longer (6,3,7,4) correspond to compute intensive regions

➢Phases lasting less (5,2,8,1) are memory bound regions

➢VECTOR_SIZE parameter has almost no influence on the execution (5% coefficient of
variation)

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 18

Commercial RISC-V platform (scalar CPU)

Phase 1 2 3 4 5 6 7 8

% of total cycles 1,29% 3,33% 19,80% 14,45% 3,49% 40,99% 14,68% 1,96%

2nd step: Enabling auto-vectorization

➢Auto-vectorization results without touching any line of code

➢VECTOR_SIZE parameter strongly influences when executing with vectors

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 19

Enabling

Compiler

Auto-vec

2nd step: Emulation supporting RVV (RAVE)

Analysis of % of vector instructions:

➢Higher VECTOR_SIZE helps the compiler to insert
more vector instructions

➢Higher VECTOR_SIZE → Increases AVL → reduces the
total number of vector instructions

➢ 70% of vector instructions are memory type

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 20

Phase

VECTOR_SIZE 1 2 3 4 5 6 7 8

16 0,00% 0,00% 1,84% 0,00% 0,00% 0,95% 24,64% 0,00%

64 0,00% 0,00% 12,73% 17,37% 17,86% 21,58% 25,87% 0,00%

128 0,00% 0,00% 16,05% 16,80% 17,94% 20,39% 25,23% 0,00%

240 0,00% 0,00% 15,31% 16,45% 16,82% 19,90% 23,90% 0,00%

256 0,00% 0,00% 15,36% 16,21% 15,88% 19,78% 24,23% 0,00%

512 0,00% 0,00% 16,65% 18,19% 18,47% 21,82% 26,20% 0,00%

30,00%

15,00%

0,00%

% Vector instruction
For Phase 6

3rd step: Run on VEC mapped into FPGA

Analysis of % of vector cycles:

➢High vCPI → we are computing several elements
per instruction (GOOD)

➢ AVL == VECTOR_SIZE → the more elements we
process per vector instruction, the less vector
instructions we execute (GOOD)

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 21

Vector activity

Phase

VECTOR_SIZE 1 2 3 4 5 6 7 8

16 0,00% 0,00% 1,84% 0,00% 0,00% 0,95% 24,64% 0,00%

64 0,00% 0,00% 12,73% 17,37% 17,86% 21,58% 25,87% 0,00%

128 0,00% 0,00% 16,05% 16,80% 17,94% 20,39% 25,23% 0,00%

240 0,00% 0,00% 15,31% 16,45% 16,82% 19,90% 23,90% 0,00%

256 0,00% 0,00% 15,36% 16,21% 15,88% 19,78% 24,23% 0,00%

512 0,00% 0,00% 16,65% 18,19% 18,47% 21,82% 26,20% 0,00%

% Vector instruction

vCPI, AVL and # vector
instructions phase 6

100,00%

75,00%

50,00%

25,00%

0,00%

Phase 2 is not vectorized and
acounts for 30% of the time

with VECTOR_SIZE=512

Example of optimization: phase 2 aka VEC2

Problem

➢Compiler unable to vectorize loop, not sure of VECTOR_DIM value

Solution

➢We know VECTOR_DIM value

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 22

Optimization - VEC2

➢Enabled vectorization in phase 2
• Performance get worst instead of improving

• AVL of vector instructions is low!
We are not taking advantage of the full-VL. Why?

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 23

Optimization - VEC2+VL

Problem

➢pnode comes from input, we do not know its value

➢Experimentally found pnode << VECTOR_DIM

Solution

➢Swap induction variables

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 24

Optimization VEC2+VL: results

➢ Improved AVL vectorization in phase 2
• Vector instructions running with AVL == VECTOR_SIZE

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 25

VEC2+VL

Alya preliminary results - VEC2+VL

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 26

Before
optimization

After
optimization

Evaluation: RISC-V vector prototype

➢After a detailed study and manual optimizations, we achieve a peak of 7.6x speedup
(VEC1)

➢Code remains portable
No intrinsics!

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 27

[*] Speed-up defined as: scalar VECTOR_SIZE16 / optimized vector
[*

]

Portability across other HPC platforms

➢Optimizations portable to other architectures
• “Traditional” cluster (Intel x86)

• Long-vector architecture (NEC SX-Aurora)

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 28

[*] Speed-up defined as: vanilla vector / optimized vector
[*

]

Take home message

➢EPI is developing:
• Arm-based CPU (not part of this talk/workshop)

• RISC-V-based Accelerator

➢We focus on the RISC-V vector accelerator (VEC) that:
• Can be self-hosted

• Support variable vector length

• Is vector length agnostic

• Uses long vectors (256 DP elements, 32x larger than x86)

• Boots linux (it is programmed as a regular core)

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 29

Take home message

➢While RTL is becoming actual hardware, EPI develops tools for boosting the co-design cycle
• Software and Hardware prototypes (aka Software Development Vehicles)

➢We can leverage SDVs to:
• Influence hardware design

• Improve compiler autovectorization and system-software support

• Study and improve vectorization of real scientific HPC codes

➢We leveraged the EPI SDVs to study and improve vectorization of a complex CFD code (Alya)
written in Fortran

➢Vectorization techniques improve performance on EPAC – VEC and are portable

➢Similar studies are on going for several scientific codes part of EU CoEs

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 30
 Blancafort, Marc, et al. "Exploiting long vectors with a CFD code: a co-design show case."

2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2024.

Thank you!

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story – Marta Garcia-Gasulla 31

EPAC 1.5 architecture
summary

HIPEAC25 - Co-design, from a buzzword to a reality, an EPI sucess story 32

	Slide 1: Co-design, from a buzzword to a reality, an EPI success story
	Slide 2: Disclaimer
	Slide 3: Who is who? What is what?
	Slide 4: EPI Main Objective
	Slide 5: EPI Main Objective
	Slide 6: EPAC: EPI Accelerator v1.5
	Slide 7: EPAC: EPI Accelerator v1.5
	Slide 8: What is special in EPAC-VEC?
	Slide 9: How do I program EPAC - VEC?
	Slide 10: What to do until the hardware is ready?
	Slide 11: What to do until the hardware is ready?
	Slide 12: Software Development Vehicles (SDV)
	Slide 13: Software Development Vehicles (SDV)
	Slide 14: Co-design with SDV
	Slide 15: Software Development Vehicles (SDV)
	Slide 16: Optimization of a CFD code for vector architectures
	Slide 17: Vectorization of a real CFD code (Alya)
	Slide 18: 1st step: Run on commercial RISC-V platforms (scalar CPU)
	Slide 19: 2nd step: Enabling auto-vectorization
	Slide 20: 2nd step: Emulation supporting RVV (RAVE)
	Slide 21: 3rd step: Run on VEC mapped into FPGA
	Slide 22: Example of optimization: phase 2 aka VEC2
	Slide 23: Optimization - VEC2
	Slide 24: Optimization - VEC2+VL
	Slide 25: Optimization VEC2+VL: results
	Slide 26: Alya preliminary results - VEC2+VL
	Slide 27: Evaluation: RISC-V vector prototype
	Slide 28: Portability across other HPC platforms
	Slide 29: Take home message
	Slide 30: Take home message
	Slide 31: Thank you!
	Slide 32: EPAC 1.5 architecture summary

