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RISC-V Analyzer of Vector Executions
a QEMU tracing plugin
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- RVV (RISC-V Vector extension) is RV’s bet for High Performance Computing
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Who is implementing this technology?
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European Processor Initiative (EPI)
     -   Rhea: arm-based general purpose CPU
     -   EPAC: European Processor Accelerator
            -   Based on RISC-V
            -   Many tiles: VRP, STX, VEC

AVX512 

SVE
512 bits per vector (8 DP elems)

Up to 2048 bits per vector (16 DP elems)

16384 bits per vector 
(256 DP elems)

Very large vector length:



How can you develop code for this accelerator?

- BSC has the Software Development Vehicles (SDV)[1]:
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LLVM-based compiler
(Vectorization)

FPGA
(EPAC HW Emulation)

Profile tools
(Analysis)

EPAC Testchip
(EPAC Silicon)

[1] Filippo Mantovani et al. (2023, May). Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study. In 
International Conference on High Performance Computing (pp. 526-537). Cham: Springer Nature Switzerland.



How can you develop code for this accelerator?

- BSC has the Software Development Vehicles (SDV)[1]:

13

LLVM-based compiler
(Vectorization)

FPGA
(EPAC HW Emulation)

Profile tools
(Analysis)

EPAC Testchip
(EPAC Silicon)

[1] Filippo Mantovani et al. (2023, May). Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study. In 
International Conference on High Performance Computing (pp. 526-537). Cham: Springer Nature Switzerland.

Access restricted 
to EPI partners

Open access! Open access!



How can you develop code for this accelerator?

- BSC has the Software Development Vehicles (SDV)[1]:

14

LLVM-based compiler
(Vectorization)

FPGA
(EPAC HW Emulation)

Profile tools
(Analysis)

EPAC Testchip
(EPAC Silicon)

[1] Filippo Mantovani et al. (2023, May). Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study. In 
International Conference on High Performance Computing (pp. 526-537). Cham: Springer Nature Switzerland.

Access restricted 
to EPI partners

Open access! Open access!
RAVE

Commodity HW with QEMU + RAVE
(SW Emulation)

Open access!



What is                     ?   a software emulator
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System-level emulation
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What is RAVE?  an analysis/profiling plugin
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System-level emulation User-level emulation



What is RAVE useful for? 
- RAVE monitors and counts metrics such as:

- Number of emulated scalar and vector instructions (you can compute Vec.Mix)

- Divided by type (Memory, Arithmetic, Mask, stride type, SEW, …)

- Average Vector Length (VL)

- Number of bytes load/stored with scalar/vector instructions

- Program Counter (PC)

18

- RAVE provides:
- API called for user application to instrument regions of interest

- Generation of reports/logs at the end of the emulation

- Generation of Paraver traces (BSC’s format for traces)
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- RAVE provides:
- API called for user application to instrument regions of interest

- Generation of reports/logs at the end of the emulation

- Generation of Paraver traces (BSC’s format for traces)

⚠ Remember: Variable VL!



Controlling the trace with the RAVE API

- We add instrumentation mechanisms, to define regions of interest.
- We work with tuples of Events and Values:
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int main(){
  rave_name_event(1000,"Code Region")
  rave_name_value(1000, 1, "Ini")
  rave_name_value(1000, 2, "Compute")

  double array1[256], array2[256], array3[256];

  rave_event_and_value(1000, 1)
  ini_vectors(array1, array2, array3);
  rave_event_and_value(1000, 0)

  rave_event_and_value(1000, 2)
  for(int i=0; i<256; ++i) 
     array3[i] += array1[i] + array2[i];
  rave_event_and_value(1000,0)
};

Enclose first region with value 1 (“Ini”)

Define event 1000 = “Code Region”
Value 1 = “Ini”
Value 2 = “Compute”

Enclose second region with value 2 (“Compute”)
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Before continuing….

- If you want to know more about the RAVE internals :
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📖 RAVE: RISC-V Analyzer of Vector Executions, a QEMU
tracing plugin https://arxiv.org/abs/2409.13639

https://arxiv.org/abs/2409.13639


RAVE Use case: Emulation Trace (I)
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- We emulated a Breadth First Search (BFS) code vectorized with RVV
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- We emulated a Breadth First Search (BFS) code vectorized with RVV



RAVE Use case: Emulation Trace (II)

Use trace insight to improve vectorization:
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RAVE Use case: Emulation Trace (III)

- We emulated a Plasma-Physics application called Vlasiator [1] 
- The code was not initially designed with long vectors in mind:
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[1] https://www.helsinki.fi/en/researchgroups/vlasiator

https://www.helsinki.fi/en/researchgroups/vlasiator
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Scalar gaps not seen on the C++ code

Added by the compiler: Copies!!
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RAVE Use case: Emulation Trace (III)

- We emulated a Plasma-Physics application called Vlasiator [1] 
- The code was not initially designed with long vectors in mind:

30
[1] https://www.helsinki.fi/en/researchgroups/vlasiator

Scalar gaps not seen on the C++ code

Added by the compiler: Copies!!
Removed by passing 

operands per reference

https://www.helsinki.fi/en/researchgroups/vlasiator


RAVE Use case: Console report

You can also obtain vectorization metrics on a console report:
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your-machine$ rave ./bfs -f graph.el 
(...)
Reg. #3: Event 1000(code_region), Value 3(BU)

tot_instr: 38872
    scalar_instr: 15818 (40.69 %)
    vsetvl_instr: 5236 (13.47 %)
    SEW 64 vector_instr: 17818 (45.84 %)
        avg_VL: 255.60 elements
        Arith: 2466 (13.84 %)
            FP: 0 (0.00 %)
            INT: 2466 (100.00 %)
        Mem: 3142 (17.63 %)
            unit: 1573 (50.06 %)
            strided: 0 (0.00 %)
            indexed: 1569 (49.94 %)
        Mask: 8171 (45.86 %)
        Other: 4039 (22.67 %)
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your-machine$ rave ./bfs -f graph.el 
(...)
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tot_instr: 38872
    scalar_instr: 15818 (40.69 %)
    vsetvl_instr: 5236 (13.47 %)
    SEW 64 vector_instr: 17818 (45.84 %)
        avg_VL: 255.60 elements
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your-machine$ rave ./bfs_no_if -f graph.el 
(...)
Reg. #3: Event 1000(code_region), Value 3(BU)

tot_instr: 44780
    scalar_instr: 21866 (48.83 %)
    vsetvl_instr: 9556 (21.34 %)
    SEW 64 vector_instr: 13358 (29.83 %)
        avg_VL: 254.77 elements
        Arith: 2481 (18.57 %)
            FP: 0 (0.00 %)
            INT: 2481 (100.00 %)
        Mem: 3028 (22.67 %)
            unit: 1454 (48.02 %)
            strided: 0 (0.00 %)
            indexed: 1574 (51.98 %)
        Mask: 4992 (37.37 %)
        Other: 2857 (21.39 %)

Reduction in Mask and 
Other Vec Instructions



Conclusions

- We developed a plugin for QEMU targeting the RISC-V Vector Extension

- RAVE allows to study vectorized applications with fine-grain detail:
- Instruction Mix, Vector Length, …

- RAVE  is already being used by performance analysts at BSC to study HPC 
applications

- Future work includes:
- Multi-core emulation (OMP and MPI)
- Automatic instrumentation of user functions
- Adding a timing model
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Try it yourself!

https://repo.hca.bsc.es/gitlab/pvizcaino/rave
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https://repo.hca.bsc.es/gitlab/pvizcaino/qemu-sdv
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