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Disclaimer

➢Almost all the slides of this presentation come from…
• Jesus Labarta (BSC)

• Filippo Mantovani (BSC)

HIPEAC25 -  Co-design, from a buzzword to a reality, an EPI sucess story – Marta Garcia-Gasulla 2



Who is who?
What is what?
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EPI Main Objective

➢To develop European microprocessor and accelerator technology

➢Strengthen competitiveness of EU industry and science
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EPAC: EPI Accelerator v1.5
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L2-HN tile

Distributed L2 cache (256 kB/slice) and 
Coherence Home Node 

VRP tile
General purpose RISC-V CPU

supporting variable precision

arithmetic up to 256 bit elements

STX tile

RISC-V many-core machine learning 
accelerator targeting stencil and 
tensor arithmetics.

CHI NoC and SerDes

On-chip high-speed network based 
on multiple CHI cross points (XP).

Off-chip link based on SerDes.

Physical design by 
Prototype board integration by 

VEC tile 
General purpose RISC-V CPU 
Avispado Core (16 kI$, 32 kD$)
with dedicated VPU
Up to 256 DP element vector length
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What is special in EPAC-VEC?

➢Boots Linux

➢The scalar in-order RISC-V core can release several requests of cache lines to the 
main memory

➢The core is connected to a Vector Processing Unit (VPU) with very wide vector 
registers (16kb)
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AVX512

SVE

512 bits per vector (8 DP elements)

Up to 2048 bits per vector (32 DP elements)

16384 bits per vector

(256 DP elements)



How do I program EPAC - VEC?

➢Autovectorization
• Leave it to the compiler

➢#pragma omp simd (aka “Guided vectorization”)
• Relies on vectorization capabilities of the compiler

▪ Usually works but gets complicated if the code calls functions

• Also usable in Fortran

➢C/C++ builtins (aka “Intrinsics”)
• Low-level mapping to the instructions

• Allows embedding it into an existing C/C++ codebase

• Allows relatively quick experimentation

➢Assembler
• Always a valid option but not the most pleasant
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What to do until the hardware is ready?
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Start testing on hwExecution on 

simulator

Wake up Neo… 

Follow the Software Development Vehicles
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Architecture 

definition

RTL 

implementation

Chip backTapeoutRTL 

verification

Physical 

design

Hardware development

Software development

Start testing on hwExecution on 

simulator
Test SW in SDV

- Prepare system software

- Provide feedback to architects

- Prepare production codes



Software Development Vehicles (SDV)
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Software Development Vehicles (SDV)
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Co-design with SDV
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Software Development Vehicles (SDV)

➢3 Steps:

• 1st step: Run in a commercial RISC-V platform (scalar CPU)

• 2nd step: RISC-V software emulation supporting RVV (RAVE)

• 3rd step: Run on VEC mapped into FPGA
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Beginner Advanced Master

Beginner Advanced Master

Beginner Advanced Master

Complexity Clearance



Optimization of a CFD code for vector 
architectures
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Vectorization of a real CFD code (Alya)

➢ Alya is a multiphysics code, developed in
Fortran and parallelized with MPI

➢ “VECTOR_SIZE” is a parameter defined in 
the code at compile time to exploit vector 
units
• Allocates data structures in a vector-friendly way
• Values under study → [16, 64, 128, 240, 256, 512]

➢ Current work focuses on incompressible flow
• Mini-app representative of the element assembly 

➢We divided the mini-app in “phases”
• Phases are regions of codes with one or more loops
• We are interested in loops because is where there is potential for vectorization
• 8 phases identified: P1+P2+P3+P4+P5+P6+P7+P8 = mini-app

➢ Study and optimization focus on the autovectorization capabilities
• No intrinsics → portability is preserved
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1st step: Run on commercial RISC-V platforms
(scalar CPU)

➢Phases taking longer (6,3,7,4) correspond to compute intensive regions

➢Phases lasting less (5,2,8,1) are memory bound regions

➢VECTOR_SIZE parameter has almost no influence on the execution (5% coefficient of 
variation)
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Commercial RISC-V platform (scalar CPU)

Phase 1 2 3 4 5 6 7 8

% of total cycles 1,29% 3,33% 19,80% 14,45% 3,49% 40,99% 14,68% 1,96%



2nd step: Enabling auto-vectorization

➢Auto-vectorization results without touching any line of code

➢VECTOR_SIZE parameter strongly influences when executing with vectors
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Enabling

Compiler

Auto-vec



2nd step: Emulation supporting RVV (RAVE)

Analysis of % of vector instructions:

➢Higher VECTOR_SIZE helps the compiler to insert 
more vector instructions

➢Higher VECTOR_SIZE → Increases AVL → reduces the 
total number of vector instructions 

➢ 70% of vector instructions are memory type
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Phase

VECTOR_SIZE 1 2 3 4 5 6 7 8

16 0,00% 0,00% 1,84% 0,00% 0,00% 0,95% 24,64% 0,00%

64 0,00% 0,00% 12,73% 17,37% 17,86% 21,58% 25,87% 0,00%

128 0,00% 0,00% 16,05% 16,80% 17,94% 20,39% 25,23% 0,00%

240 0,00% 0,00% 15,31% 16,45% 16,82% 19,90% 23,90% 0,00%

256 0,00% 0,00% 15,36% 16,21% 15,88% 19,78% 24,23% 0,00%

512 0,00% 0,00% 16,65% 18,19% 18,47% 21,82% 26,20% 0,00%

30,00%

15,00%

0,00%

% Vector instruction
For Phase 6



3rd step: Run on VEC mapped into FPGA

Analysis of % of vector cycles:

➢High vCPI → we are computing several elements 
per instruction (GOOD)

➢ AVL == VECTOR_SIZE → the more elements we 
process per vector instruction, the less vector 
instructions we execute (GOOD)
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Vector activity

Phase

VECTOR_SIZE 1 2 3 4 5 6 7 8

16 0,00% 0,00% 1,84% 0,00% 0,00% 0,95% 24,64% 0,00%

64 0,00% 0,00% 12,73% 17,37% 17,86% 21,58% 25,87% 0,00%

128 0,00% 0,00% 16,05% 16,80% 17,94% 20,39% 25,23% 0,00%

240 0,00% 0,00% 15,31% 16,45% 16,82% 19,90% 23,90% 0,00%

256 0,00% 0,00% 15,36% 16,21% 15,88% 19,78% 24,23% 0,00%

512 0,00% 0,00% 16,65% 18,19% 18,47% 21,82% 26,20% 0,00%

% Vector instruction

vCPI, AVL and # vector 
instructions phase 6

100,00%

75,00%

50,00%

25,00%

0,00%

Phase 2 is not vectorized and 
acounts for 30% of the time 

with VECTOR_SIZE=512



Example of optimization: phase 2 aka VEC2

Problem

➢Compiler unable to vectorize loop, not sure of VECTOR_DIM value

Solution

➢We know VECTOR_DIM value
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Optimization - VEC2

➢Enabled vectorization in phase 2
• Performance get worst instead of improving

• AVL of vector instructions is low!  
We are not taking advantage of the full-VL. Why?
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Optimization - VEC2+VL

Problem

➢pnode comes from input, we do not know its value

➢Experimentally found pnode << VECTOR_DIM

Solution 

➢Swap induction variables
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Optimization VEC2+VL: results

➢ Improved AVL vectorization in phase 2
• Vector instructions running with AVL == VECTOR_SIZE
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VEC2+VL



Alya preliminary results - VEC2+VL
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Before 
optimization

After 
optimization



Evaluation: RISC-V vector prototype

➢After a detailed study and manual optimizations, we achieve a peak of 7.6x speedup 
(VEC1)

➢Code remains portable
No intrinsics!
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[*] Speed-up defined as: scalar VECTOR_SIZE16 / optimized vector
[*

]



Portability across other HPC platforms

➢Optimizations portable to other architectures
• “Traditional” cluster (Intel x86)

• Long-vector architecture (NEC SX-Aurora)
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[*] Speed-up defined as: vanilla vector / optimized vector
[*

]



Take home message

➢EPI is developing:
• Arm-based CPU (not part of this talk/workshop)

• RISC-V-based Accelerator

➢We focus on the RISC-V vector accelerator (VEC) that:
• Can be self-hosted

• Support variable vector length

• Is vector length agnostic

• Uses long vectors (256 DP elements, 32x larger than x86)

• Boots linux (it is programmed as a regular core)
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Take home message

➢While RTL is becoming actual hardware, EPI develops tools for boosting the co-design cycle
• Software and Hardware prototypes (aka Software Development Vehicles)

➢We can leverage SDVs to:
• Influence hardware design 

• Improve compiler autovectorization and system-software support

• Study and improve vectorization of real scientific HPC codes

➢We leveraged the EPI SDVs to study and improve vectorization of a complex CFD code (Alya) 
written in Fortran

➢Vectorization techniques improve performance on EPAC – VEC and are portable

➢Similar studies are on going for several scientific codes part of EU CoEs
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 Blancafort, Marc, et al. "Exploiting long vectors with a CFD code: a co-design show case." 

2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2024.



Thank you!
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EPAC 1.5 architecture 
summary
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