
Software Development Vehicles

to enable extended and early co-design:
a RISC-V and HPC case of study

Filippo Mantovani*, Pablo Vizcaino, Fabio Banchelli, Marta Garcia-Gasulla, Roger Ferrer, Jesus Labarta
Barcelona Supercomputing Center (BSC)

Giorgos Ieronymakis, Nikos Dimou, Vassilis Papaefstathiou
FORTH-ICS (Greece)

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg 1

Context

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg 2

European Processor Initiative

General Purpose Processor (RHEA – Arm based) EPI Accelerators (EPAC – RISC-V based)

Out of the scope of this talk

Contact points:

SiPearl, Atos, CEA,

Univ. of Bologna, E4,

Univ. of Pisa, et al.

https://www.european-processor-initiative.eu/

Focus of this talk!

https://www.european-processor-initiative.eu/

EPAC-VEC: RISC-V core “Avispado”
riscv64gcv

 16 kB instruction cache

 32 kB data cache

 Decodes v0.7, v1.0 vector extension

 Full hardware support for unaligned accesses

 Cache coherent (CHI)

 Vector memory accesses (vle, vlse, vlxe, vse, …)

processed by a dedicated queue (MIQ/LSU)

3

Courtesy:

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

EPAC-VEC: Vector processing unit “Vitruvius”

 Implementation

 Long vectors: 256 DP elements

 #Functional Units (FUs) << Vector Length (VL)

 1 vector instruction can take several (32) cycles

 8 Lanes per core

 FMA/lane: 2 DP Flop/cycle

 40 physical registers, some out of order

 Vector length agnostic (VLA) programming and architecture

4

📝 F. Minervini, et al. “Vitruvius+: An Area-Efficient RISC-V Decoupled Vector

Coprocessor for High Performance Computing Applications” [TACO-2022-50] RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

How wide is “your” vector?

5

D1 D2 D3 D4 D5 D6 D7 D8Intel AVX 512

256 DP elements

16 kbits

RISC-V EPAC VEC

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

What’s special?

 The scalar in-order RISC-V core can release several requests of cache lines to the main memory

 The core is connected to a Vector Processing Unit (VPU)

6

A

B

C

+

=

Scalar

A

B

C

+

=

Vector

VL=4 VL=2VL=4

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

What’s special? – part 2

 Preserve a linear, scalar, portable program

 No need to think about “kernels to offload to the accelerator”

 Vector instructions

 Less instructions (including scalar instructions for controlling a loop)

 Several cycles for a single vector instruction

 Enables overlap: other functional units can do useful work meanwhile

 Makes easier to keep all functional units busy

 Vector accelerator

 Launch a vec. Instruction ~= Launch a kernel (in GPU terms)

 i.e., a few cycle for decoding vs. several cycles for firing up a thread

 Coalescing on load instructions

 Compared to scalar flow, pay overhead of load instruction start-up only once

 Saturate the memory bandwidth with less cores

7

We have tools to measure each of these effects

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

How do I program it?

Like a standard HPC system!

 Compile your code

 We give you a compiler

 Link libraries

 Write/Submit a job script

 SLURM

 Wait for the results

 Analyse execution traces and study

how well your code is vectorized

8

Applications

Libraries (FFTW, SpMV, ...)

Scheduler (Slurm)

Compiler (LLVM)

OS (Linux)

Hardware

(RISC-V self hosted)

Programming Model

(OpenMP, MPI)

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

How to take advantage of the V-extension?

 Assembler

 Always a valid option but not the most pleasant

 C/C++ builtins (intrinsics)

 Low-level mapping to the instructions

 Allows embedding it into an existing C/C++ codebase

 Allows relatively quick experimentation

 #pragma omp simd (aka “Guided vectorization”)

 Relies on vectorization capabilities of the compiler

 Usually works but gets complicated if the code calls functions

 Also usable in Fortran

 Autovectorization

 Leave it to the compiler

9RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

What do we do while hardware becomes ready?

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg 10

Co-design!!!

What do you mean

by co-design?

Co-design with EPAC-VEC

 Influence design decisions

 Architecture definition / implementation

 System software (e.g., compiler, libraries)

 Scientific applications

 SDV: Software Development Vehicles

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg 11

Software Development Vehicles (SDV)

12RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

Software emulator: Vehave

 Compile using the RISC-V Vector extension (RVV) Compiler

 Obtain a binary with vector instructions

 Run in a commercial RISC-V platform (scalar CPU)

 Obtain a trace with detailed information about the vectorization

13

Commercial RISC-V platform (scalar CPU)

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

Software emulator: Vehave

PROS:

 Useful to understand the potential vectorization
of the code

 Easy to use and accessible with no need of
hardware infrastructure

 It supports RVV-0.7 and RVV-1.0

 Output compatible with Paraver

CONS:

 Slow

 No information about performance (no timing)

14RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

1st step: study with Vehave

 Compile an application

 Relying on autovectorization,
with intrinsics, pragmas or assembly

 Study the output of the compiler

 Run with emulation enabled

 Collect execution traces

 Visualize and study traces

 Is the code vectorized?

 Which kind/how many vector instructions?

 Which vector length is used?

 Is there a way to write a “vector friendly” code?

 Can the compiler “do better”?

15RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

1st step: study with Vehave

16RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

FPGA-based Software Development Vehicles

 Same RTL of EPAC mapped into FPGA

 One tile (i.e., single core)

 Running at 50 MHz

 Full HPC software stack and

execution environment

 Binary compatibility

 Shared storage (NFS)

 Multi-user / Multi-node (via MPI)

 Standard debug and performance analysis tools for HPC

17RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

2nd STEP: Study on FPGA-SDV

 Compile an application

 Relying on autovectorization,
with intrinsics, pragmas or assembly

 Study the output of the compiler

 Run natively on real hardware

 Full support for I/O, syscalls, hw counter, etc

 Collect execution traces

 Visualize and study traces

 Which “vector CPI” do we achieve?

 What are the most time-consuming phases?

 How are we accessing the memory?

 Can we overlap computation and memory accesses?

18

vCPI =
cycles VPU works

#vector instructions

computePoints uses slow instructions

(374 cycles per vector instruction, on average!)

fastest vCPI with

vl=256 is 35 cycles

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

3rd step: signal analysis on FPGA-SDV

Integrated Logic Analyser

 Fine grained analysis (at level of instructions)

is possible

 Graphical representation of timelines

 In depth study can help highlighting:

1. Low usage of the vector unit

 Feedback to the code developer

2. Suboptimal saturation or resources (FU, mem)

 Feedback to the RTL implementation team

3. Suboptimal overlap of instructions

 Feedback to the compiler team

(improve scheduling)

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg 19

Co-design with FPGA-SDV

20RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

We can leverage SDVs to:

 Influence hardware design

 Improve compiler autovectorization

and system-software support

 Study and prepare

codes and libraries

for long-vector architectures

References

 SDV tutorial: https://www.fz-juelich.de/en/ias/jsc/news/events/2023/ias-seminar-filippo-mantovani

 📝 Gómez, Constantino, Filippo Mantovani, Erich Focht, and Marc Casas. "Efficiently running SpMV on

long vector architectures." In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pp. 292-303. 2021.

 📝 Vizcaino, Pablo, Filippo Mantovani, Roger Ferrer, and Jesus Labarta. "Acceleration with long vector

architectures: Implementation and evaluation of the FFT kernel on NEC SX‐Aurora and RISC‐V vector

extension." Concurrency and Computation: Practice and Experience (2022): e7424.

 📰 https://www.eetimes.com/examining-the-top-five-fallacies-about-risc-v/

 📽️ https://www.youtube.com/watch?v=iFlcJFcOJKk

21RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

https://www.fz-juelich.de/en/ias/jsc/news/events/2023/ias-seminar-filippo-mantovani
https://www.eetimes.com/examining-the-top-five-fallacies-about-risc-v/
https://www.youtube.com/watch?v=iFlcJFcOJKk

Acknowledgment and contacts

 Stream 3 leader and responsible for SDV:

 Filippo Mantovani filippo.mantovani@bsc.es

 EPI General Manager:

 Etienne Walter etienne.walter@atos.net

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg 22

@EuProcessor

European Processor Initiative

mailto:filippo.mantovani@bsc.es
mailto:etienne.walter@atos.net
https://twitter.com/EuProcessor
https://www.linkedin.com/company/european-processor-initiative/

EPI FUNDING

This project has received funding from the European High Performance

Computing Joint Undertaking (JU) under Framework Partnership Agreement No

800928 and Specific Grant Agreement No 101036168 EPI-SGA2.

The JU receives support from the European Union’s Horizon 2020 research and

innovation programme and from Croatia, France, Germany, Greece, Italy,

Netherlands, Portugal, Spain, Sweden, and Switzerland.

23RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg

RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg 24

	Default Section
	Slide 1: Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study
	Slide 2: Context
	Slide 3: EPAC-VEC: RISC-V core “Avispado” riscv64gcv
	Slide 4: EPAC-VEC: Vector processing unit “Vitruvius”
	Slide 5: How wide is “your” vector?
	Slide 6: What’s special?
	Slide 7: What’s special? – part 2
	Slide 8: How do I program it?
	Slide 9: How to take advantage of the V-extension?
	Slide 10: What do we do while hardware becomes ready?
	Slide 11: Co-design with EPAC-VEC
	Slide 12: Software Development Vehicles (SDV)
	Slide 13: Software emulator: Vehave
	Slide 14: Software emulator: Vehave
	Slide 15: 1st step: study with Vehave
	Slide 16: 1st step: study with Vehave
	Slide 17: FPGA-based Software Development Vehicles
	Slide 18: 2nd STEP: Study on FPGA-SDV
	Slide 19: 3rd step: signal analysis on FPGA-SDV Integrated Logic Analyser
	Slide 20: Co-design with FPGA-SDV
	Slide 21: References
	Slide 22: Acknowledgment and contacts
	Slide 23: EPI FUNDING
	Slide 24

