
IEEE I&M Chapter/GDR SoC2 Workshop DL, Nancy, France, 10 Oct 2019

IEEE IMS DL:

Instrumentation and Measurement
and Autonomous Driving

Prof. Ing. Sergio Saponara
Tel. +39 050 2217 602, Fax. +39 050 2217522

sergio.saponara@unipi.it

Outline
(EPI related slides, 20/80)

• Societal, economical, technical challenges of autonomous &
connected vehicles and intelligent transport systems (ITS)

• Remote sensing (Radar, Lidar) in smart vehicle & ITS
• Sensing technology for navigation
• eHPC (embedded High Performance Computing) needs of

autonomous and connected cars – the H2020 European
Processor Initiative (EPI) project

• Arithmetic accuracy for DNN acceleration (Posits in EPI)
• Conclusions

Enabling TEchnologies for smArt vehicles and Mobility (EPI 120 M€ project in 5 years)

Copyright © European Processor Initiative 2019.

Secure channel

V2V

V2X

Embedded
HPC

European Processor Initiative

ACES Vehicles & Mobility

Autonomous Connected Electrified Shared

Safety
Critical

Industry 4.0
& Robotics

AeroSpace

Automotive

Servers
& Cloud

HPC
Core

Drivers

sovereignty

AI accelerators

Copyright © European Processor Initiative 2019.

EPI
27 PARTNERS

EPI partners & HW/SW eco-system

EPI Roadmap & Architecture

EPI chip in 6 nm technology

 EPAC - EPI Accelerator

 MPPA - Multi-Purpose Processing Array

 eFPGA - embedded FPGA

 Cryptographic ASIC (EU Sovereignty)

New eHPC ECU: Safe&secure MCU with high-SIL controlling EPI-like
number crunchers (multi-core 64b GPP + accelerators)

EPI enables AUTOSAR adaptive platform

Memory needs for autonomous cars

Memory needs and trends for assisted driving

Outline

• Societal, economical, technical challenges of autonomous &
connected vehicles and intelligent transport systems (ITS)

• Remote sensing (Radar, Lidar) in smart vehicle & ITS
• Sensing technology for navigation
• eHPC (embedded High Performance Computing) needs of

autonomous and connected cars – the H2020 European
Processor Initiative (EPI) project

• Arithmetic accuracy for DNN acceleration (Posits in EPI)
• Conclusions

Motivations for alternatives to float in ML & DNN

• In Automotive Applications, Machine Learning (ML) and Deep Neural
Networks (DNNs) must run in vehicle, relying on internet connection
and remote services can not be mandatory

• we need both HPC on-board the vehicle, and/ore more efficient
representation of the information

• The representation chosen for real numbers has a high impact on the
synthetized hardware (cores, SoC acceletarors, etc.)

• Novel posit format as alternative to float (posit library developed in
Pisa: the cppPosit library)

• Floating-point representation (IEEE-754) has some limitations:
The support to unnormalized numbers is tricky (needs more HW)
Too many representations wasted for Not-A-Number
Uses the same number of bits for the mantissa, both for small and
large numbers (and this is inefficient)

Computing Industry Looking for Alternatives
• Intel/Google BFLOAT16 (equivalent to a standard single-precision

floating-point value with a truncated mantissa field). Basically, they are
less precise than fp16, but with a range similar to fp32. Supported in
Google cloud TPU and TensorFlow and Intel AI processors

• Intel flexpoint (16bits size aiming at equivalent fp32 accuracy)
• NVIDIA (e.g. concurrent execution of Floating Point and Integer

Instructions in the new Turing SM; from Fp32/Fp16and INT32 to INT8
and INT4 precision modes for inferencing workloads that can tolerate
quantization)

• Tesla FSD chip (Neural processing units use 8-bit by 8-bit integer
multiply and a 32-bit integer addition)

• Transprecision computing proposed in state of art (e.g. Greenwaves)

The Novel Posit Format
• Proposed by John Gustafson in 2017
• It can be viewed as a compressed floating-

point format, which deserves more
mantissa bits for low number and less for
large numbers, within a fixed-length format

• No-need to use un-normalized floats (so, no
extra-hardware wasted to handle this
exception)

• Only one representation wasted for Not-A-
Real (NAR)

• Posit numbers use an interesting encoding
which allows, to compare two posits, to
reuse the same circuit used to compare two
integers in 2’s complement already present
in the ALU

The cpp-Posit Library developed in Pisa

• State-Of-The-Art Posit library, developed in Pisa
• Very efficient (written in C++, fully exploiting templates and several

features of the C++14 standard)
• Emulates a Posit Processing Unit (PPU) using, either

– The FPU and the ALU, or
– The ALU alone (the FPU is emulated using softfloat)

• Supports TABULATED POSITS (using look-up-tables, for posit having
total length <= 14 bit): this speedup the library, a mandatory feature
to train DNNs

• Next goals (ongoing activities):
– Exact Dot Product: main goal 1
– High Level Synthesis in FPGA/ SoC Accelerator: main goal 2

Are Posits Really Better Than Floats?

• Yes!
• UNIPI has performed comparisons on both Machine Learning (K-NN)

and Deep Neural Networks for Image Classification (we extended the
tiny-DNN C++ library)

• We have found that, on a K-NN application (see next slide):
– a 16-bit posit is as accurate as a 32-bit float (single precision)
– an 8-bit posit is much better than a 16-bit float (half precision).

• On an DNN used for image classification:
– a 10-bit posit is as accurate as a 32-bit float (>98.5% of correct

classification)
– a 8-bit posit is able to provide a very high accuracy (>97%)

• Both cppPosit-based K-NN and tiny-DNN libraries have been selected as
WP1 benchmark applications (they support both floats and posits)

The Cpp-Posit based K-NN Library
– The K-NN algorithm searches for the K points in a dataset that are the closest to a

given query point
– It can be computed in an exact or approximated manner.
• Implemented the approximated NN, using floats and posits
• Compared the two formats on two standard benchmarks:

Fashion Mnist 784 Euclidean & SIFT-128-Euclidean

The scaling factor re-
scales the dynamic

range of the original
dataset, without
affecting relative

dynamic.
Scale 1.0: original

dataset. For a given
scaling factor, the

higher the precision,
the better

Experiments with Deep-Neural Networks
• We integrated the cppPosit library with tiny-DNN open source C++ lib
• A posit12 DNN reaches the same accuracy of the float32 counterpart
• To speedup the learning phase, we tabulated the posits (LUT)
• Acceptable performance can even be attained using an 8-bit

Data Type (tot_bits, exp_bits) Accuracy on 10,000 images

Float32 98,88%

Posit16,2 98,88%

Posit14,2 98,85%

Posit12,2 98,66%

Posit10,0 98,69%

Posit8,0 97,24%

• MNIST dataset: 10 classes, 10,000 samples
• Convolutional Neural Network

 Similar results obtained on CIFAR10.
 Currently investigating the ImageNet

dataset, using the AlexNet pre-trained network

Posit Processing Unit (PPU) vs FPU

• Lower memory footprint (on RAM, on disk)
• Higher bandwidth & lower power consumption
• More cache-friendly (due to the use of shorter data)
• More suited for vectorization (again, shorter data means more data on

registers at the same time – see ARM SVE)

Memory needs to store the single

LUT as a function of X

(total number of bits of the Posit)

A Posit Processing Unit (PPU) can be synthesised e.g. using the Vivado toolkit: the
cppPosit library allows automatic HDL code generation starting from C++ code
An alternative is a LUT tabulated implementation of a PPU, for posits with max 8/10 b

Posits for DNN/ML: conclusions

• Posits have the potential to overcome most of the float issues in Machine
Learning and DNN computing

• They allow to reduce the bandwidth bottleneck problem during
read/write from/to RAM

• Have beneficial effects on vectorizable applications, since data are
generally shorter

• They are more cache friendly, every time a posit8 can replace a float16, a
posit16 a float32 and a posit32 a float64 (i.e., in most of the applications)

• A posit library developed at UniPI (cppPosit)
• Tested on K-NN and DNN benchmarks
• Activity ongoing:

– Test on additional datasets/applications
– Recompile on ARM-64 SVE simulator
– Software implementation of the Exact Dot Product
– Hardware PPU by high level synthesis

Prof. Ing. Sergio Saponara
Tel./Fax +39 050 2217602 /522

sergio.saponara@unipi.it

Thanks for your attention

