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Outline  
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• Societal, economical, technical challenges of autonomous & 
connected vehicles and intelligent transport systems (ITS)

• Remote sensing (Radar, Lidar) in smart vehicle & ITS
• Sensing technology for navigation
• eHPC (embedded High Performance Computing) needs of 

autonomous and connected cars – the H2020 European 
Processor Initiative (EPI) project

• Arithmetic accuracy for DNN acceleration (Posits in EPI)
• Conclusions
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EPI Roadmap & Architecture

EPI chip in 6 nm technology

 EPAC - EPI Accelerator 

 MPPA - Multi-Purpose Processing Array

 eFPGA - embedded FPGA

 Cryptographic ASIC (EU Sovereignty)



New eHPC ECU: Safe&secure MCU with high-SIL controlling EPI-like 
number crunchers (multi-core 64b GPP + accelerators)

EPI enables AUTOSAR adaptive platform



Memory needs for autonomous cars 



Memory needs and trends for assisted driving
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Motivations for alternatives to float in ML & DNN

• In Automotive Applications, Machine Learning (ML) and Deep Neural 
Networks (DNNs) must run in vehicle, relying on internet connection 
and remote services can not be mandatory

• we need both HPC on-board the vehicle, and/ore more efficient 
representation of the information

• The representation chosen for real numbers has a high impact on the 
synthetized hardware (cores, SoC acceletarors, etc.)

• Novel posit format as alternative to float (posit library developed in 
Pisa: the cppPosit library)

• Floating-point representation (IEEE-754) has some limitations:             
The support to unnormalized numbers is tricky (needs more HW)                                                                                                       
Too many representations wasted for Not-A-Number
Uses the same number of bits for the mantissa, both for small and 
large numbers (and this is inefficient)



Computing Industry Looking for Alternatives
• Intel/Google BFLOAT16 (equivalent to a standard single-precision

floating-point value with a truncated mantissa field). Basically, they are
less precise than fp16, but with a range similar to fp32. Supported in
Google cloud TPU and TensorFlow and Intel AI processors

• Intel flexpoint (16bits size aiming at equivalent fp32 accuracy)
• NVIDIA (e.g. concurrent execution of Floating Point and Integer

Instructions in the new Turing SM; from Fp32/Fp16and INT32 to INT8
and INT4 precision modes for inferencing workloads that can tolerate
quantization)

• Tesla FSD chip (Neural processing units use 8-bit by 8-bit integer
multiply and a 32-bit integer addition)

• Transprecision computing proposed in state of art (e.g. Greenwaves)



The Novel Posit Format
• Proposed by John Gustafson in 2017
• It can be viewed as a compressed floating-

point format, which deserves more 
mantissa bits for low number and less for 
large numbers, within a fixed-length format

• No-need to use un-normalized floats (so, no 
extra-hardware wasted to handle this 
exception)

• Only one representation wasted for Not-A-
Real (NAR)

• Posit numbers use an interesting encoding 
which allows, to compare two posits, to 
reuse the same circuit used to compare two 
integers in 2’s complement already present 
in the ALU



The cpp-Posit Library developed in Pisa

• State-Of-The-Art Posit library, developed in Pisa
• Very efficient (written in C++, fully exploiting templates and several 

features of the C++14 standard)
• Emulates a Posit Processing Unit (PPU) using, either

– The FPU and the ALU, or
– The ALU alone (the FPU is emulated using softfloat)

• Supports TABULATED POSITS (using look-up-tables, for posit having 
total length <= 14 bit): this speedup the library, a mandatory feature 
to train DNNs

• Next goals (ongoing activities):
– Exact Dot Product: main goal 1
– High Level Synthesis in FPGA/ SoC Accelerator: main goal 2



Are Posits Really Better Than Floats?

• Yes!
• UNIPI has performed comparisons on both Machine Learning (K-NN) 

and Deep Neural Networks for Image Classification (we extended the 
tiny-DNN C++ library)

• We have found that, on a K-NN application (see next slide):
– a 16-bit posit is as accurate as a 32-bit float (single precision)
– an 8-bit posit is much better than a 16-bit float (half precision).

• On an DNN used for image classification:
– a 10-bit posit is as accurate as a 32-bit float (>98.5% of correct 

classification)
– a 8-bit posit is able to provide a very high accuracy (>97%)

• Both cppPosit-based K-NN and tiny-DNN libraries have been selected as
WP1 benchmark applications (they support both floats and posits)



The Cpp-Posit based K-NN Library
– The K-NN algorithm searches for the K points in a dataset that are the closest to a 

given query point
– It can be computed in an exact or approximated manner.
• Implemented the approximated NN, using floats and posits
• Compared the two formats on two standard benchmarks:                                     

Fashion Mnist 784 Euclidean & SIFT-128-Euclidean

The scaling factor re-
scales the dynamic

range of the original 
dataset, without 
affecting relative 

dynamic.
Scale 1.0: original 

dataset. For a given 
scaling factor, the 

higher the precision, 
the better



Experiments with Deep-Neural Networks
• We integrated the cppPosit library with tiny-DNN open source C++ lib
• A posit12 DNN reaches the same accuracy of the float32 counterpart
• To speedup the learning phase, we tabulated the posits (LUT)
• Acceptable performance can even be attained using an 8-bit

Data Type (tot_bits, exp_bits) Accuracy on 10,000 images

Float32 98,88%

Posit16,2 98,88%

Posit14,2 98,85%

Posit12,2 98,66%

Posit10,0 98,69%

Posit8,0 97,24%

• MNIST dataset: 10 classes, 10,000 samples
• Convolutional Neural Network

 Similar results obtained on CIFAR10.
 Currently investigating the ImageNet

dataset, using the AlexNet pre-trained network



Posit Processing Unit (PPU) vs FPU 

• Lower memory footprint (on RAM, on disk)
• Higher bandwidth & lower power consumption
• More cache-friendly (due to the use of shorter data)
• More suited for vectorization (again, shorter data means more data on 

registers at the same time – see ARM SVE)

Memory needs to store the single

LUT as a function of X

(total number of bits of the Posit)

A Posit Processing Unit (PPU) can be synthesised e.g. using the Vivado toolkit: the 
cppPosit library allows automatic HDL code generation starting from C++ code
An alternative is a LUT tabulated implementation of a PPU, for posits with max 8/10 b



Posits for DNN/ML: conclusions

• Posits have the potential to overcome most of the float issues in Machine 
Learning and DNN computing

• They allow to reduce the bandwidth bottleneck problem during 
read/write from/to RAM

• Have beneficial effects on vectorizable applications, since data are 
generally shorter

• They are more cache friendly, every time a posit8 can replace a float16, a 
posit16 a float32 and a posit32 a float64 (i.e., in most of the applications)

• A posit library developed at UniPI (cppPosit)
• Tested on K-NN and DNN benchmarks
• Activity ongoing:

– Test on additional datasets/applications
– Recompile on ARM-64 SVE simulator
– Software implementation of the Exact Dot Product
– Hardware PPU by high level synthesis
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